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Abstract

Humans have evolved to have great pattern recognition abilities in re-
trieving information from data which resembles that of natural vision
i.e. a three dimensional scene with different surfaces reflecting light
through a translucent medium. But when it comes to recognizing ob-
jects in a scene which is solid throughout we have to resort to viewing
a series of 2D slices. In practice it is time-consuming for humans to
analyse three dimensional imagery; for some tasks two dimensional
slices are not informative enough for good accuracy. This natural de-
ficiency and the ever-increasing frequency in use of 3D imaging tech-
niques is our motivation for developing flexible open-source pipeline
for performing distributed 3D image segmentation.

We take a structured learning approach and construct a condi-
tional random field (CRF) from super-pixels extracted with a 3D imple-
mentation of the Simple Linear Iterative Cluster (SLIC) algorithm. The
CRF includes features of each super-pixel’s local information as well
as its spacial relation to the neighbouring super-pixels. A Structured
Support Vector machine is trained on this CRF representation with a
distributed implementation of the Block-Coordinate Frank-Wolfe algo-
rithm. Label prediction is performed by Loopy Belief Propagation.

The viability of this pipeline is tested by measuring accuracy
and scalability in a variety of configurations on real-world data sets
as well as with synthetic experiments designed to illustrate particular
strengths of the system. Our experiments indicate that with the right
feature functions this approach can be successfully applied to a large
variety of image segmentation tasks with a high or low number of train-
ing examples.
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Chapter 1

Introduction

1.1 Motivation

Modern imaging techniques are rapidly becoming less noisy, less expensive,
and higher resolution in the fields of biology and medicine in particular.
Their (can’t really use ’their’ here) wide array of imaging techniques has
given rise to an ever-increasing volume of high dimensional data which in
the absence of computer assistance would be near impossible for humans
to analyse [6], [25]. In the processing of three dimensional data especially,
humans have difficulty in using their normal spacial reasoning as the images
can not truly be displayed in three dimensions - it is necessary for one to look
through the tissues to see the relevant markers and consequently, humans
must resort to analysing the images in a series of two dimensional slices [15],
[30]. We are creating an open-source distributed framework for 3D image
segmentation for service researchers working with three dimensional data
that can be easily adapted to many data types.

1.2 Image Segmentation as Structured Prediction

Structured Prediction is a subset of supervised machine learning which
solves problems in the case that the output variable can not be represented
as a simple label or scalar value. In our applications, we are attempting
image segmentation which in a naive implementation could be modelled as
a massively single nominal variable classification problem where each pixel
is assigned a feature vector but the spatial relation between pixels is not
considered. While the classification ground truth is per pixel, we are inter-
ested in the true objects which originally produced these pixels and their
relation to other objects in the visible field. Hence the problem is more ac-
curately modelled as a joint classification problem over all of the pixels in
the image. A conditional random field (CRF) is a type of undirected proba-
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1. Introduction

Figure 1.1: Visualization of a Conditional random field for image segmenta-
tion where yi are the super-pixel labels, the edges between yi are the pair-
wise potentials, xi are the unary features of that super pixel and the edges
between xi and yi are the unary potentials

bilistic graphical model that can encode known information between states
of nodes and that can be used to jointly calculate the marginal probability
of each node state based on the possible relative states of all other nodes.
We structure image segmentation as a CRF of pixel groupings which have
edges to their spatially adjacent groups. These groups of pixels can also be
called super-pixels.

More specifically, the conditional random field has 1 node per super-pixel
representing its label which has a unary potential linked to its unary-feature
node, and a pairwise potential linked to each of its neighbours. Considering
each pixel to be part of a joint output domain results in an output space of
Kn, where K is the number of possible labels and n is the number of super-
pixels. In this paper we take the Structured Support Vector Machine (SSVM)
approach to perform joint prediction over all variables and their relations
simultaneously.

1.3 The Pipeline

For color or grayscale 3D tif stacks, image data super-pixels are constructed
with the Simple Linear Iterative Clustering (SLIC) algorithm. The super-
pixel to pixel assignment mask is then used to construct a graph where each
node receives a feature vector calculated from only the pixels assigned to
this super-pixel. The ground truth is transformed into a graph with the same
mask by assigning each node the label which the majority of its pixels have.
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1.4. Comparison To Related Work

The super-pixel generation and all other data set preprocessing is currently
performed on the driver node without distributing. This training data set is
then used to learn a SSVM with Block Coordinate Frank-Wolfe (BCFW). The
training occurs in equal partitions locally on different machines; at the end
of every round the accumulated weights are recombined by the master node.
Each of the executor machines find the most constraining, possible next up-
date direction; this sub-problem is called the max-oracle. We implemented
Mean Field to perform the max-oracle step but also included Loopy Belief
propagation from the factorie package[24]. The transfer of data and manage-
ment of computational resources is done through the SPARK framework[40]
with the CoCoA algorithm which is designed to reduce lower network traf-
fic. CoCoA and the BCFW solver is taken from the dissolve-struct frame-
work [29]. Once training is completed the model is again synchronized on
the executor node and prediction is performed on the test data set.

1.4 Comparison To Related Work

For the super-pixel preprocessing step of our pipeline we choose to use SLIC
super-pixels because of its time complexity and ability to control the number
and shape regularity of the resulting super-pixels. Regularity of super-pixels
in space is important to our model because it does not retain any information
about the original spacial relations between pixels except for the case where
super-pixels were neighbours during preprocessing. For the SSVM solver
we chose BCFW because it can be distributed over n machines if the data
set has n training examples and has good convergence properties even with
approximate max-oracle solvers [19].

1.4.1 Super-pixel Alternatives

One group of alternative super-pixel generation algorithms is graph-based
wherein each pixel is initially considered to be a single node in a graph
with undirected edges to its adjacent pixels. The edges are assigned weights
based on a feature map including information from both neighbours’ mem-
ber pixels. Then standard graph processing algorithms are used to minimize
a global energy function over this graph resulting in a disconnected graph of
super-pixels. One such algorithm is the Normalized cuts algorithm [34]. The
global criteria, defined by normalized cut, captures information regarding
total dissimilarity between node groupings, and also total similarity within
the groups. The segmentation algorithms based on this criteria can achieve
a computational complexity of O(N

3
2 ) [21]. While the algorithm has had

some success [27] we prefer SLIC for 3D images due to its lower complexity
of O(N).

Another graph approach was proposed by Fezenszwalb and Huttenlocher
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1. Introduction

[9] which performs well with images that include both high variance and
low variance regions. The algorithm performs global clustering where each
super-pixel is the smallest spanning tree to cover its pixels. This approach
has a better time complexity of O(N log N) but in contrast to SLIC, it does
not have the ability to control the number of super-pixels or the regularity
of their shapes.

A non-parametric approach was introduced by Comaniciu and Meer which
performs a recursive mean shift in the direction of the nearest stationary
point of an underlying density function to find the mode of the distribution
[5]. It has been shown that this algorithm is equivalent to the Nadaray-
Watson regression kernel. It should be noted that this algorithm also does
not have the ability to control the number or shape of the resulting super-
pixels.

An empirically faster mode-seeking algorithm, Quick Shift, was introduced
in 2008 [39]. The algorithm, for each pixel, finds the closest pixel in terms
of increasing the Parzen density estimator and then moves them together.
While it is quite fast, this algorithm can not also control the number, or
compactness of the resulting super-pixels.

1.4.2 SSVM Solver Alternatives

The most common way of solving SVMs is through the implementation of
the stochastic gradient descent algorithms (SGD). The direct generalization
of SGD for problems with objective functions which are not differentiable
- the stochastic sub-gradient descent algorithm (SSGD) - has found some
applications in structured learning [32] [38] [33]. Stochastic sub-gradient
descent has a good convergence rate of Õ( 1

ε ) and like BCFW only requires
one max-oracle call. But for SSGD to actually achieve the stated convergence
rate it is assumed the user has specified an appropriate sequence of step
sizes for the given problem [32]. This additional tuning parameter of the
step-size sequence is not required for BCFW because we can calculate the
optimal step-size per iteration.

1.4.3 Alternative Software Packages

NiftySeg is a 3D Image segmentation framework targeting brain imagery. It
uses EM based segmentation with good performance on its data. Another
valuable portion of the framework are the features specially designed for
MRI images[4]. NiftySeg is a very useful tool in its specific field of appli-
cation but as it is not a distributed system the size of the data sets it can
reasonably process is limited.

Another specialized open-source framework was published in 2013 and named
NIRFAST [14]. It is optimized for MRI images and utilizes blood oxygen

4



1.4. Comparison To Related Work

saturation, water content and lipid concentration to construct the image seg-
ments. Once again, however, this framework was not designed to run on a
distributed system.
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Chapter 2

Theory

The notation we use here is a modified version of the notation used in [23]
and [19]. While we will reproduce the relevant information here, [19] is the
original publication of the BCFW solver and [1] is the original publication
of the SLIC super pixel algorithm.

2.1 Recall Support Vector Machines

The traditional binary Support Vector Machine problem can be stated as
finding the best weight vector w to correctly classify all multidimensional
data points x ∈ X based on their features Φ(x)

y(x) = wTΦ(x) (2.1)

If tn ∈ {−1, 1} is the n’th true label for xn we can formulate the maximum
margin optimization problem as :

arg max
w
{ 1
||w||minn[tn(wTΦ(xn))]} (2.2)

Considering that re-scaling w does not affect the distance of any point to
the decision plane we can scale them such that tn(wTΦ(xx)) ≥ 1 holds for
all points. We can drop the minn term from the optimization objective by
adding the tn(wTΦ(xx)) ≥ 1, ∀xx constraint because due to the w rescaling
there will always be at least one point for which the above statement is an
equality. By this transformation we arrive at the canonical primal definition:

arg min
w

1
2
||w||2 S.T. (2.3)

tn(wTΦ(xx)) ≥ 1 (2.4)

When contrasting SVM methods with the basic Perceptron one can recog-
nize that a Perceptron can find many different decision boundaries between
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2. Theory

the classes depending on what the ordering of that data set was or what w
was initialized. The SVM has less freedom on the decision plane because it
jointly optimizes the misclassification error and the margin of the support
vectors. For a detailed comparison see [26]. It is intuitive to think that choos-
ing the decision boundary with the largest margin would minimize the gen-
eralization error and it has indeed been shown theoretically that maximizing
the margin minimizes bounds on the generalization error [2].

As an alternative to solving the primal formulation directly we can other-
wise solve it in the dual. The dual formulation allows us to use kernel
function; and later we will see for our large dimensional problem that the
dual parameters can be very sparse, providing computational advantages.
To construct the Dual problem we differentiate the Lagrangian and substi-
tute back into L(w, a).

L(w, a) =
1
2
||w||2 −

N

∑
n=1

antn(wTΦ(xn))− 1 S.T. (2.5)

w =
N

∑
n=1

antnΦ(xn) (2.6)

0 =
N

∑
n=1

antn (2.7)

Which leads us to the canonical dual representation:

arg max
a

N

∑
n=1

an −
1
2

N

∑
n=1

N

∑
m=1

anamtntmΦ(xn)
TΦ(xm) S.T. (2.8)

an ≥ 0, ∀n (2.9)
N

∑
n=1

antn = 0 (2.10)

2.1.1 Duality Gap

The dual solution is not necessarily equal to the primal solution as the La-
grangian is only exact in the limit. The difference between the primal and
dual is called the duality gap. It is possible for the gap to be zero - referred
to as strong duality - but in most cases it is sufficient to compute the duality
gap every couple of rounds to see if it is below a certain threshold in order
to decide whether or not to stop iterating the solver.

2.1.2 SVM with High Class count

When using an svm for a problem with more than 2 classes one must train
several classifiers with one pivot class. If we have classes [A,B,C] then we
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2.2. Structured Support Vector Machine

train two SVMs [ SVMAvsB(xn), SVMAvsC(xn) ] predict labels by choosing
the label which got the best score vs A or we predict A if both SVMs la-
belled it as A. This method of classification is computationally inefficient
especially for problems with large numbers of classes. Image segmentation
is a problem with a massive class space because we do not simply have the
R number of labels which a pixel could take but we have the combination of
labels over the entire image, hence the number of possible labels for a single
image is Rn where n is the number of pixels.

2.2 Structured Support Vector Machine

Structured Prediction is the category of machine learning techniques de-
signed to work with data that is more complex than a real valued outcome
variable. The data will be expressed in a model which describes the relations
between subsets of the data. In our image segmentation problem the output
domain y ∈ Y(x) is the set of all possible label configurations for a given
image x. And x ∈ X is the set of all possible images. Structured Support Vec-
tor machines generalize the maximum margin approach to this kind of data.
The standard approach for constructing a SSVM is to define a joint feature
mapping Φ : X ×Y → Rd which can include a measure of distance between
two y and also between different images x. On this joint feature space we
again learn a linear function to the output, in contrast to the SVM; predicting
requires maximizing over the possible labels arg maxy∈Yi

Li(y)− 〈w, ψi(y)〉.
With a training data set D = (xi, yi)

n
i=1, we estimate w by minimizing :

min
w,ξ

λ

2
||w||2 + 1

2

n

∑
i=1

ξi S.T. (2.11)

〈w, ψi(y)〉 ≥ L(yi, y)− ξi ∀i, ∀y ∈ Y(xi) (2.12)

where ψi(y) := θ(xi, yi)− θ(xi, y), Li(y) := L(yi, y) and L(yi, y) is the dis-
tance between the true label configuration and another possible label config-
uration - typically we use the hamming distance here. The slack variable ξi
holds the accepted error in this soft-margin formulation and λ is the regu-
larization parameter.

This first formulation still has (an) exponential number of constraints due
to Y(xi), but we can alleviate this issue by replacing the ∑i |Yi| linear con-
straints with n piecewise-linear constraints as defined by this hinge-loss:

H̃i(w) := max
y∈Yi

Li(y)− 〈w, ψi(y)〉 (2.13)

9



2. Theory

min
w

λ

2
||w||2 + 1

n

n

∑
i=1

H̃i(w) S.T. (2.14)

ξi ≥ H̃i(w) (2.15)

The calculation of H̃i(w) is also referred to as the ”max-oracle” and is typi-
cally implemented with computational tricks to avoid a lot of the complexity
of performing the max directly. In the following sections we assume an effi-
cient solver for H̃i(w) exists.

2.2.1 Dual Formulation SSVM

There are m := ∑i |Yi| variables which could become support vectors. In this
formulation we use αi(y) as the dual variable associated with the training
example i and y ∈ Yi as the potential output. Solving the Lagrangian for
the SSVM similar to 2.8 results in the following dual form:

min
α∈R,α≥0

f (α) :=
λ

2
||Aα||2 − bTα S.T. (2.16)

∑
y∈Yi

αi(y) = 1 ∀i ∈ [n] (2.17)

where A ∈ Rd×m is the column matrix A := { 1
λn ψi(y) ∈ Rd|i ∈ [n], y ∈ Yi}

and b := ( 1
n Li(y))i∈[n],y∈Yi

. In this formulation we will have a very sparse
representation in the dual variable vector α which is advantageous for sub-
gradient optimization. With the Karush-Kuhn-Tucker conditions we can
map between the dual and primal forms w = Aα = ∑i,y∈Yi

αi(y)
ψi(y)

λn . Com-
puting the gradient of 2.16 we find ∇ f (α) = λAT Aα− b = λATw− b. Ad-
ditionally, note that the domain of f (α) is the product of n probability sim-
plicities, M := ∆|Y1| × ...× ∆|Yn|. The sparsity in α and the ability to easily
move back to the primal is crucial for solving high dimensional problems.

2.3 Quadratic Programming Solvers

2.3.1 Frank-Wolfe optimization

The Frank-Wolfe algorithm, originally published in 1956 [10], is a quadratic
programming solver with the same wide applications as typical sub-gradient
methods due to its only requiring optimization of linear functions over the
feasible set M. It is applicable to any convex optimization problem where
the feasible setM is compact and the objective f is convex and continuously
differentiable. The basics steps of the algorithm start with choosing a feasi-
ble search corner s by minimizing the linearisation of f (using the current
α) constrained on being insideM.

10
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↵
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↵

Figure 2.1

All of the following steps are a convex combination of a new s and the pre-
vious iteration with some step-size γ. This formulation is advantageous for
problems when α is in high dimensions, as the current α can be expressed
in terms of the initial α(0) and all s corners selected in the iterations lead-
ing up to the current round. An α that can be written in this form can be
stored in memory as a sparse object and hence never needs to allocate mem-
ory. Without this property an α for image segmentation would never fit into
memory. Additionally, Frank-Wolfe has the advantage that we can compute
the duality gap for free, because when f is convex its minimization overM
is a lower bound on the value of the globally optimal f (α∗). Being able to
compute the duality gap allows us to monitor the progress of the algorithm
over time and also allows us to choose a theoretically-sound stopping crite-
ria f (α)− f (α∗) ≤ ε. It has also been shown [7] that the algorithm converges
to a ε-approximate solution within O( 1

ε )

1 Let α(0) ∈ M;

2 for k = 0 ... K do
3 Compute s := arg mins′∈M〈s′,∇ f (α(k)〉 ;

4 Let γ := 2
k+2 or optimize γ by line-search update

α(k+1) := (1− γ)α(k) + γs

5 end
Algorithm 1: Frank-Wolfe on a Compact Domain
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2. Theory

2.3.2 Block Coordinate Frank-Wolfe

One disadvantage of the Frank-Wolfe algorithm described above is that it
requires n calls to the maximization oracle for SSVMs. The Block-Coordinate
Frank-Wolfe algorithm [19] improves this by only requiring one call to the
maximization oracle in the context of SSVMs. The method described in
[19] and reproduced here in Algorithm 2 can be applied to any constraint
optimization problem of the form

min
α∈M1×...×Mn

f (α) (2.18)

having a Cartesian product over n ≥ 1 blocks as the domain M = M1 ×
...×Mn ⊆ Rm. The reduction in oracle calls comes from this structure in
M. This structure allows us to perform cheap update steps affecting only
one variable blockM(i) instead of optimizing the entire problem simultane-
ously. We assume that each factor is convex and compactM(i) ⊆ Rmi , with
m = ∑n

i=1 mi. In the following αi ∈ Rmi is the i-th block of coordinates of
a vector α ∈ Rm. The iterative root of Algorithm 2 chooses one block uni-
formly at random and leaves the other blocks unchanged. If we only had
one partitioning i.e. n = 1 then Algorithm 2 is equivalent to the original
Frank-Wolfe algorithm.

1 Let α(0) ∈ M(1) × ...×M(n);

2 for k = 0 ... K do
3 Pick i at random in {1, ... ,n };

4 Find s(i) := arg mins′
(i)∈M

〈s′(i)∇(i) f (α(k)〉 ;

5 Let γ := 2n
k+2n or optimize γ by line-search;

6 Update αk+1
(i) := α

(k)
(i) + γ(s(i) − α

(k)
(i) );

7 end
Algorithm 2: Block-Coordinate Frank-Wolfe Algorithm on product Do-
main

Another advantage of BCFW over other methods like Stochastic Gradient
Descent is that we can compute our optimal step-size γ in closed form.

BCFW For SSVM

For our image segmentation applications we used the BCFW algorithm 3 for
SSVMs such that we only need to maintain the primal w. The equivalence
between Algorithm 2 and Algorithm 3 rests on the relations : ws = As[i]

12



2.4. CRF Models

and `s = bTs[i] in the primal update. Where s[i] is a zero-padded version of
s(i) := ey∗i ∈ M such that s[i] ∈ M.

1 Let w(0) := w(0)
i := w̄(0) := 0, `(0) := `

(0)
i := 0;

2 Using Hi(y, w(k)) := Li(y)− 〈w, ψi(y)〉 ;

3 for k = 0 ... K do
4 Pick i at random in {1, ... ,n };

5 Solve y∗i := arg maxy∈Yi
Hi(y, w(k)) ;

6 Let ws := 1
λn ψi(y∗i ) and `s := 1

n Li(y∗i );

7 Let γ := λ(w(k)
i −ws)Tw(k)−`(k)i +`s

λ||w(k)
i −ws||2

and clip to [0, 1];

8 Update w(k+1)
i := (1− γ)w(k)

i + γws and

`
(k+1)
i := (1− γ)`

(k)
i + γ`s ;

9 Update w(K+1) := w(k) + w(k+1)
i −w(k)

i and

`(k+1) := `(k) + `
(k+1)
i − `

(k)
i ;

10 (Optionally: Update w̄(k+1) := k
k+2 w̄(k) + 2

k+2 w(k+1) )

11 end
Algorithm 3: Block-Coordinate Frank-Wolfe Algorithm For SSVM

where Hi(y, w(k)) := Li(y)− 〈w, ψi(y)〉 is the hinge loss as used in 2.13.

Important for our image segmentation application is that these BCFW con-
vergence properties also hold if the max-oracle is solved approximately. We
simply require that the oracle gives a candidate direction s(i) with multiplica-
tive accuracy ν ∈ (0, 1] in terms of the duality gap on the current block [19].
But with approximate oracles there is a slow down in convergence inversely
proportional to the accuracy at 1

ν2 . We will utilize this property in order to
quickly find an approximate maximal energy with variational methods.

2.4 CRF Models

The following model describes the basis of how we construct the joint feature
function ψ used in the SSVM formulation 2.13. The SSVM is expressed as a
quadratic programming problem hence the constraints must be linear. We
express the energy function Ew as an inner product of the features and the
weight vector w. Our CRF energy is separated into its unary and pairwise
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2. Theory

portion.

Di(yi) = 〈wD, κD
i (yi)〉 (2.19)

Vij(yi, yj) = 〈wV , κV
ij (yi, yj)〉 (2.20)

where κD(yi) and κV
ij (yi, yj) are feature maps dependent on both the ob-

served data and the labels.

κD(yi) = (I(yi = 1)xT
i , ..., I(yi = K)xT

i )
T, (2.21)

where xi is the feature vector associated with super pixel node i, K is the
max label and yi ∈ {1, ..., K}. If wD is the column vector [wD

1 , ..., wD
K ]

T then
the unary term of Ew can be written as an inner product

Di(yi) = 〈wD
yi

, xi〉, (2.22)

Which gives the unary factor of node i if it were labelled with yi. The pair-
wise feature mapping can be defined similarly

κD
ij (yi, yj) = (I(yi = a, yj = b))(a,b)∈{1,...,K}2 (2.23)

with parameters wV = (wab)(a,b)∈{1,...,K}2 , then we can write the pairwise
term as a simple indexing

Vij(yi, yj) = wyiyj (2.24)

This pairwise term defines the edge energy between adjacent node i and j
as the learned cost in w of the transition between label yi and yj. We now
combine the unary and pairwise term by allowing, w = ((wD)T, (wV)T)T,
FD(Y) = ∑i∈ν κD

i (yi), FV(Y) = ∑(i,j)∈ζ κV
ij (yi, yj) and

F (Y) = [FD(Y)T,FV(Y)T]T to define the total energy of a CRF as an inner
product

Ew(Y) = 〈w,F (Y)〉 (2.25)

where ν is the set of vertices of super-pixels extracted from the input image
and ζ is the set of edges. For a visualization see Figure 1.1.

2.4.1 CRF model variations

Of the three CRF models we used to describe our image segmentation data,
the unary model is the most simple and also the only one where we can, in
a reasonable amount of time, compute an exact solution to the max-oracle
problem.
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2.4. CRF Models

Unary CRF Model

In what we call the unary model each super-pixel label node is simply con-
nected to its unary potential which simplifies the energy function too

EwD(Y) = 〈wD,FD(Y)〉 (2.26)

Pairwise CRF Model

The pairwise model contains the same factors represented in the unary
model but also includes the edge potentials as described in 2.25

Ew(Y) = 〈w,F (Y)〉 (2.27)

Data-dependent Pairwise CRF Model

The data-dependent pairwise model is an expansion of the pairwise model
by redefining the pairwise energy as in

FV(Y) = ∑
(i,j)∈ζ

κDV
ij (yi, yj) (2.28)

κDV
ij (yi, yj) = (I(yi = a, yj = b) ∗v I

ij)(a,b)∈{1,...,K}2 (2.29)

v I
ij = (I(v(xi, xj) = c))c∈range(v) (2.30)

The function v(xi, xj) is a binning function, with a small discrete range in
Z. It is used to give the pairwise term more flexibility to learn transition
probabilities between labels under certain contexts. For examples of such
functions and an analysis of the advantages of using a data dependent pair-
wise term see [35] and [22].

Average Intensity Difference For all neighbouring nodes A and B we cal-
culate the average intensity (for RGB we also use grayscale intensity)
and simply take their squared difference. Quantiles are computed for
the entire data set and used to calculate fixed boundaries for binning
the pairwise edges based on argument numDataDepGraidBins.

Average Intensity Difference scaled by one hop neighbourhood Standard Deviation
For all neighbouring nodes A and B we calculate the difference in
average intensity divided by the sum of variances of the one hope
neighbourhoods of both nodes (for RGB it’s also the grayscale inten-
sity). The values are calculated for all neighbours in the training set
and sorted to find quantile boundaries which result in equal mass be-
ing binned to each group. The number of bins depends on argument
numDataDepGraidBins.
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2. Theory

Average Intensity Difference scaled by two hop neighbourhood Standard Deviation
For all neighbouring nodes A and B we calculate the difference in
average intensity divided by the sum of variances of the two hope
neighbourhoods of both nodes (for RGB it’s also the grayscale inten-
sity). The values are calculated for all neighbours in the training set
and sorted to find quantile boundaries which result in equal mass be-
ing binned to each group. The number of bins depends on argument
numDataDepGraidBins.

Uniqueness difference For all neighbouring nodes we calculate the unique-
ness in its one hop neighbourhood by the number of neighbourhood
standard deviations away from the neighbourhood mean the super-
pixel average intensity is. For any two neighbouring nodes A and B we
then compute the difference in this uniqueness measure. The values
are calculated for all neighbours in the training set and sorted to find
quantile boundaries which result in equal mass being binned to each
group. The number of bins depends on argument numDataDepGraidBins.

Uniqueness in Opposite Neighbourhood The internal super-pixel mean
intensity AvgI() and the average mean in its one hope neighbour-
hood AvgNeigh() is calculated for all nodes. For all neighbouring
nodes A and B we compute (AvgI(A)− AvgNeigh(B))2 + (AvgI(B)−
AvgNeigh(A))2 as the total uniqueness of each node in the others’
neighbourhood. The values are calculated for all neighbours in the
training set and sorted to find quantile boundaries which result in
equal mass being binned to each group. The number of bins depends
on argument numDataDepGraidBins.

2.5 Max Oracles

The max-oracle problem, arg maxy∈Yi
Li(y)− 〈w, ψi(y)〉, depending on the

structure of y can be intractable. When modelling the image segmentation
problem with a pairwise CRF as in 2.28, then a naive maximization by cal-
culating the energy for all y ∈ Yi would be intractable because |Yi| = R|y|

where R is the number of possible labels and |y| is equal to the number of
super-pixels. Hence we must intelligently approximate this max-oracle or
use a simpler model.

2.5.1 Naive Unary Max

When solving a model with unary potentials only, as in 2.26, we can find
an exact solution with O(K|y)i|) by simply evaluating the loss-augmented
potential for each super-pixel node and every possible label. This method
can actually get rather good results if the unary term includes features which
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2.5. Max Oracles

have information about the surrounding space or the classes have repeating
patterns in each super-pixel significantly distinct from the other classes.

Mean Field

All variational methods approximate a difficult to compute true distribution
P with a distribution with lower computational complexity Q which is close
to the true distribution, in terms of the Kullback–Leibler divergence. The
distance between P and Q is defined as DKL(Q||P) = ∑Z Q(Z) log Q(Z)

P(Z|X)
,

where Z are some unobserved variables and X is a data set. In the case of
our image segmentation problem Z are the hidden labels y and the data is
X . One of these variational methods is the Mean Field inference wherein a
computationally feasible Q is constructed as a product of individual distri-
butions for a subset of the unobserved variables i.e. Q(Z) = ∏M

i=1 qi(Zi|X).
In our image segmentation problem we could model the pairwise CRF as
a series of exponential distributions. The parameters of Q can be quickly
inferred from the data with variational calculus. When considering the CRF
visualization of Figure 1.1, Mean Field would prune all edges between the
labels, but then find the distributions of the individual qi iteratively as a
function of all other qi.

2.5.2 Loopy Belief Propagation

The Sum-Product algorithm is a message-passing algorithm used to find
marginals on Bayesian networks which can be expressed as trees [18]. We
can transform a Bayesian network that is a tree into a bipartite factor graph
where each variable is a class variable in the Bayesian network and each
factor is some probabilistic relation between variables (and hence has an
edge to all those variables). Then we can quickly see that the marginal
probability of a leaf is independent of the remaining graph variables given
all factors it is connected to. Below we name the factors and variables of the
bipartite graph as fA, fB, fC... = F and x1, x2, x3, x4... = X respectively. The
Sum-Product Algorithm computes the marginal probabilities by applying
the following rules to each node in the factor graph starting with the root.

Product Rule : At each variable node take the product of all its descendants.

Sum-product Rule : At each factor node fi take the product of all its de-
scendants and then sum over all variables except for the uncompleted
parent node.

More precisely we can define the messages:

Variable to factor message:
µx→ f ( fi) = ∏

h∈n(x)\ fi

µh→x (2.31)
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2. Theory

factor to variable message:
µ f→x(xi) = ∑

xj∈X\xi

( f (xj) ∏
y∈n( f )\xi

µy→ f (y)) (2.32)

Where µ are types of messages, \{a} define the set operator of excluding a,
n(a) is the set of neighbours of a. Using the Sum-Product algorithm one can
compute all marginals inO(n2) and with some additional rules recomputing
factors can be avoided.

Loopy Belief Propagation is an extension on the Sum-Product algorithm
which simply applies the same rules to a loopy graph in each iteration ig-
noring that it is actually not a tree. But in practice it has shown good results
[28]. We expect good results on our super-pixel graph because the direct con-
nections are by far the most important and do not depend on much more
than their adjacent nodes.
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Chapter 3

Super-Pixel Preprocessing

The computationally most expensive step during the preprocessing stage
of our pipeline is the construction of super-pixels. Once the super-pixels
are constructed it can be considered a single data point with its features and
with one label. If we were to use a simple grid of square super-pixels we will
have a good chance of summarizing features on a super-pixel which includes
significant portions of two or more labels however, the resulting training set
will attribute the features coming form this area to just the label which had
the highest pixel count even if that is only 51% of the super-pixel. One way
to minimize these overlapping features is to make the super-pixels small.
As the number of super-pixels which are on the edge between two objects is
smaller than the area inside each object this will make the data set cleaner
overall. But the smaller we choose a super-pixel, the larger the resulting
graph gets and for pairwise models the graph size has an exponential effect
on the number of possible decodings for the max-oracle. Additionally, if the
super-pixels are too small the unary features extracted from them may not
be able to capture the signature patterns present in each object. We would
like to choose a super-pixel size which optimizes these two criteria. With a
fixed S we are left with the specific boundaries of the super-pixel to combat
the problem of overlapping features.

There are many super-pixel generation algorithms which attempt to align
with edges of objects; since we are dealing with large images we choose to
use the SLIC algorithm [1].

The SLIC approach is to perform a kind of localized k-means cluster on a
unified space including the pixel value and its spacial coordinates. For RGB
color images this space could be the the 6D space of [r,g,b,x,y,z]. If we were
to run simple k-means on this space with a euclidean distance function we
would run into the problem of the RGB space being bounded while the xyz
space is not. Normalizing the spacial distance proportional to the selected
super-pixel size is one key difference to K-means. In terms of complexity
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3. Super-Pixel Preprocessing

the key difference to K-means cluster is the assumption which allows SLIC
to have a O(N) , that assignments to a super-pixel cluster will never be
farther than 2S× 2S× 2S away from the center, resulting in K(8S3) or 8N

assignments, since S = 3
√

N
K ), K = N

S3 . While the complexity of K-means is
O(NK), SLIC has O(N).

3.1 SLIC Algorithm

Our ScalaSLIC implementation allows for a general object data type to be
saved in each pixel location. If the user would like to cluster something other
than RGB or grayscale images they must define distance functions on their
data type. For grayscale ddata =

√
(Ik − Ii)2 where Ik is the grayscale intensity

of the cluster center and Ii that of the to-be-compared pixel. For RGB ddata =√
(lk − li)2 + (ak − ai)2 + (bk − bi)2 where [l,a,b] are the dimensions of the

CIELAB color space.

1 Initialize cluster centers Ck = [DataTypek, xk, yk, zk]
T by sampling

pixels at regular grid steps S. Perturb cluster centers in a 3x3
neighbourhood, to the lowest gradient position.

2 while E ≤ threshold do
3 for each cluster center Ck do
4 Assign the best matching pixels from a 2S× 2S× 2S cube

neighbourhood around the cluster center according to the
distance measure
Ds = ddata +

m
S

2
√
(xk − xi)2 + (yk − yi)2 + (zk − zi)2

5 end

6 Compute new cluster centers

7 Compute residual error E (L1 distance between previous centers
and recomputed centers)

8 end

9 Enforce Connectivity
Algorithm 4: SLIC Super-pixels

Our current implementation of ScalaSLIC is not distributed but the cluster
assignment loop is parallelized by threading.
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3.2. Super-pixel Size Effect On Training Time

Figure 3.1: Here we plot the total training time varying the size of super-
pixels (and therefore the number of nodes in the graph). Larger graphs re-
sult in larger data volumes moving across the network but the primary time-
consuming function in our BCFW is the max-oracle. We repeat the same
super-pixel resizing experiment with LoopyBP max-oracle and the Naive
max for a unary model.

3.2 Super-pixel Size Effect On Training Time

One of the key factors in dealing with our high dimensional data is to not
consider each pixel individually but rather to create super-pixels which then
make each image significantly lower dimensional. The difficulty of the prob-
lem depends on the number of possible y ∈ Yi, by decreasing the size of the
super-pixels the number of super-pixels goes up with y = ( L

S )
3, where C is

the length of one edge of a cubic volumetric image. The work required for
the naive max-oracle on the unary model is K( L

S )
3, where K is the number

of possible labels. For the pairwise CRF the naive approach of computing
the energy for all possible y would be K( L

S )
3
. Although LoopyBP does not

try all possible y we expect the size of the graph to increase computation
time more than for any unary based max-oracle. See Figure 3.1 for empiri-
cal results on total training time for both LoopyBP on a pairwise model and
the Naive method on a unary model.
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3. Super-Pixel Preprocessing

3.3 SLIC vs Naive Squares

When directly comparing the test scores of a SSVM trained on SLIC versus
Square super-pixels we found that SLIC does in fact increase performance
in both Unary and Pairwise models. In contrast to most figures here we
are looking at the per pixel loss(see Figure 3.2. The UCSB Nuclei data set
is largely skewed towards one class and hence we train on a loss that is
weighted by the inverse class frequency. With loss weighting we also find a
significant improvement in test loss on this Nuclei data set, see Figure 3.3.

Figure 3.2: Comparing the per pixel test loss using either SLIC or Square
super-pixels. The experiment was repeated for Unary model and a Pair-
wise model solved with Loopy Belief Propagation. Data ( SynthData see
A.5, WhiteNoise:0.40 SquarImgSize:30 OsilNoise:0.40 SupSqrColorShift:0.0
SuperPix, S:30, M:30, Max Decoding:LoopyBP/NiveMax )

3.4 Visualization SLIC compactness parameters

In our implementation we slightly alter the use of M in contrast to the
above distance function. Let x,y & z be vectors containing both pixel co-
ordinates and the spacial centres of the super-pixel clusters index by their
subscript. And let r, g, b be the vectors containing the RGB color infor-
mation for pixels and super-pixel centres. Here we use subscript k for
some cluster center and subscript i for some pixel id: Distance(P, C) =
M2

S2
2
√
(xk − xi)2 + (yk − yi)2 + (zk − zi)2 +

√
(rk − ri)2 + (gk − gi)2 + (bk − bi)2.
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3.4. Visualization SLIC compactness parameters

Figure 3.3: Comparing the per class frequency per super-pixel test loss using
either SLIC or Square super-pixels. The experiment was repeated for Unary
model and a Pairwise model solved with Loopy Belief Propagation. Data(
Single Channel 3D Nuclei Images [11])

(a) S=15, M=1000 (b) S=15, M=45 (c) S=15, M=14

Figure 3.4: SLIC example segmentation on a single 2D MSRC image, varying
the compactness paramater M

LABColor-space can be used optionally instead of RGB. For an illustration
of the effect of parameter M on the segmentation see Figure 3.4 and Figure
3.5

Due to the inherent difficulty of seeing through a block of solid tissue we
will visualize the effect of parameter M by only drawing the voxels labelled
as foreground; this 3D data set is a binary classification problem and hence
can be displayed like this.
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3. Super-Pixel Preprocessing

(a) Original per pixel groundtruth (b) Original raw voxels

(c) SLIC super-pixels M = 50 (d) SLIC super-pixels M = 9

Figure 3.5: Where we visualize the effect of the SLIC compactness parameter
M on a 3D data set. The EM mitocondria [16] data has only two labels al-
low us to display one volumentrically while the other is transparent. In this
case we are displaying those voxels which are labeled as mitochondria fore-
ground. Image a) is the original ground truth, Image b) is a cross-sectional
cut of the raw voxels c) are the boundaries of the super-pixels labelled as fore-
ground with M=50 and d) Are the boundaries of the super-pixels labelled
as foreground with M=9. We can see that as M is lowered the boundaries of
the super-pixels become less cubic and fit the true shape more.
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Chapter 4

Results

4.1 3D Dataset, EM Mitochondria Labelling

To demonstrate the image segmentation pipeline in all its parts we choose to
use a EM Mitochondria dataset because it is a natural dataset with objects
which are not easily distinguishable, and still has good labeled data [16].
The single training image of size 1024× 768× 165 was split into 82 by 82
by 82 cubes and super-pixels where constructed with S = 10 and M = 9
producing a graph with 921 nodes on average (recall S is the super-pixel
size and M is its compactness, see section 3.4 for details). We then trained
the Naive Max classifier on a unary model, Mean Field and LoopyBP on
a pairwise model and LoopyBP on two data dependent pairwise models.
The results show a clear superiority of pairwise models over unary models.
Amongst the pairwise models it can be beneficial to use a more complex
data dependent model but the score variance is too high for a statistically
significant difference. Surprisingly we found that with a λ = 100 Mean
Field performed close to LoopyBP with lower training time (recall λ is the
regularization parameter). See Figure 4.1 for details.
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Figure 4.1: Over 30 rounds we trained the SSVM using different models and
different max oracle functions. LoopyBP and MF where trained on a sim-
ple pairwise model as in 2.4.1. Naive Max oracle was trained a Unary only
model see 2.4.1. Additionally we trained two data dependent pairwise mod-
els see section 2.28 with LoopyBP max-oracle. The data dependent pairwise
transition binning function ”Avg Intensity” groups neighbouring nodes by
the difference in the mean intensity inside each super-pixel, the function
”Neigh Uniq” calculates how many standard deviations away the mean of
node A is from the distribution of intensities in the one hope neighbourhood
of node B. (Data: EM Mitochondira Labeled Image split into 823 cubes with
super-pixels of size S = 10 [16] )

4.2 Sparse Transition Probability Tables

During our exploration of different datasets we saw high variance on whether
the pairwise models increases accuracy as compared to the baseline naive
unary max oracle. To examine which situations the pairwise term is partic-
ularly helpful we designed as set of synthetic experiments. For details on
the data generation functions see Appendix A.5. In the following experi-
ments we generated data with a significant amount of noise and set rules
for how many labels are allowed to be adjacent to any label A for all other
labels. We call the probability that two labels are allowed to be neighbours
dataGenNeighProb. If we were to allow any label to be next to any other
label then the only thing the pairwise term can learn is that super pixels
generally occur in groups. So they are generally more likely to occur next
to one of their own label versus any other. But by restricting only few la-
bels to be allowed as neighbours we give the pairwise term a target which
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4.2. Sparse Transition Probability Tables

contains many zeros and hence will have a greater impact on the decoding
energy. In the following graph we show the accuracies of pairwise versus
unary model while changing the probability that any 2 classes are allowed
to be neighbours.

Figure 4.2: As the datagenNeighProb decreases it creates a more sparse tran-
sition probability matrix which makes it easier for the pairwise models to
identify this information. Once below 0.3 the pairwise benefit starts decreas-
ing again because the likelihood of most of the image being the background
label increases. Data ( SynthData, WhiteNoise:0.40 SquarImgSize:30 Osil-
Noise:0.40 SupSqrColorShift:0.0 SuperPix, S:5, M:5, Max Decoding:LoopyBP
)

As the reader can see the largest difference between unary and pairwise
occurs in the middle of the graph. This is because as dataGenNeighProb
goes to 1.0 all classes can be adjacent to all others. As it approaches 0.0
the image becomes mostly background because that label is reserved as a
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Table 4.1: Transitions tables using dataGenNeighProb=0.4

True Transition probability between labels

0.000e+00 4.245e-01 3.271e-02 0.000e+00
4.245e-01 0.000e+00 2.861e-02 0.000e+00
3.271e-02 2.861e-02 1.667e-03 1.333e-02
0.000e+00 0.000e+00 1.333e-02 0.000e+00

Learned Pairwise Weights

-7.349e-04 4.557e-04 3.112e-04 -2.030e-05
4.557e-04 -1.305e-04 -3.408e-04 -1.313e-04
3.112e-04 -3.408e-04 -1.149e-04 1.250e-04
-2.030e-05 -1.313e-04 1.250e-04 -5.570e-05

Table 4.2: Transition tables using dataGenNeighProb=1.0:

True Transition probability between labels

1.046e-01 1.106e-01 1.120e-01 2.292e-03
1.106e-01 1.061e-01 1.099e-01 2.500e-03
1.120e-01 1.099e-01 1.092e-01 2.778e-03
2.292e-03 2.500e-03 2.778e-03 1.389e-04

Learned Pairwise Weights

7.650e-05 3.878e-04 2.306e-04 4.022e-05
3.878e-04 2.015e-04 3.430e-04 4.590e-05
2.306e-04 3.430e-04 -7.471e-05 3.638e-05
4.022e-05 4.590e-05 3.638e-05 -4.405e-05

fallback when all other labels are not allowed due to the neighbouring rules.
In Table 4.1 the reader can inspect columns of the transition probability and
the weights learned in the pairwise model for data using this transition
probability table. Notice, those label pairs which have the highest transi-
tion probability also have the highest weight in the corresponding learned
pairwise potential column. In contrast table 4.2 does not have this correspon-
dence. BCFW does not have an objective of learning the correct transition
probabilities but rather to decrease the hinge loss. For this objective it only
alters the direction of w if that portion of the feature vector is useful in dis-
tinguishing data. Hence when the transition probability is not sufficiently
distinguishable between images it will not be learned. With the sparse
transition probability explanation for the pairwise advantage in mind we
can construct a dataset which should give more advantage to the pairwise
model by making the super-pixels exactly equal to the supersquares. This
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4.2. Sparse Transition Probability Tables

Figure 4.3: Test Error vs Label Transition Sparsity

With Super-pixel size == SuperSquare size

(a) The figure shows a substantial improvement in the test Error for the pairwise
model. These results can be compared to 4.2 which is the same experiment but with
smaller super pixels. Since in this experiment we set the super-pixels equal to the
supersquare size the diagonal of the transition probability matrix is just as sparse
as the rest. Data ( SynthData, WhiteNoise:0.40 SquarImgSize:30 OsilNoise:0.40 Sup-
SqrColorShift:0.0 SuperPix, S:30, M:30, Max Decoding:LoopyBP )

configuration should result in transition probabilities from the label to itself
(the diagonal) being as sparse as the rest of the matrix. In Figure 4.3a we
see the expected result, that the distance between the pairwise and unary
model increases as we farther increase the sparsity of the transition proba-
bility matrix.
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4.3 Prediction Smoothing

By visual inspection of label predictions we subjectively observed a trend of
the pairwise models performing better when disconnected single labels in
clusters of others labels is unlikely. In figure 4.4 we can see the upper row
of predicted labels by the pairwise model is much smoother than the lower
row of unary model predictions. As described above the supersquares are
always of equal size and in this configuration contain several super-pixels
internally. The image is not perfectly smoothed into squares because we
jointly optimize pairwise and unary factors. Figure 4.5 gives evidence for
the same understanding of smoothness as figure 4.4 but with real world
data. Again we see that the pairwise model has less standalone super pixel
labels indicating that the pairwise term is working as expected. But in this
particular experiment the the pairwise term also had a negative effect as on
the lower side of the nuclei cluster is another set of high contrast objects
which are only slightly disconnected from the main body. These nearby
easily mistaken objects are all grouped into the main nuclei cluster in using
the pairwise term result in a worse score than the few mislabeling made
by the unary model. Hence we must be mindful of the way in which we
are including the spacial relations into our model, as in this datasets where
one must consider that there may be a separation between groups of classes
which is less than one super pixel wide. One way to combat this could be to
set the compactness parameter for the SLIC preprocessing very low so that
thin long super-pixels could be placed between the two groups of classes.

Figure 4.4: This figure shows the predicted labels per pixel for a pairwise
model in the top row and a unary only model in the bottom row. By visual
inspection the reader can see that the top pairwise model is more smooth
in that the blobs of labels are more connected and generally in larger col-
lections. While the bottom unary model output frequently has a single su-
per pixel with a label surrounded by larger groups of distinct labels. Data
( SynthData, WhiteNoise:0.40 SquarImgSize:30 OsilNoise:0.40 SupSqrColor-
Shift:0.0 SuperPix, S:30, M:30, Max Decoding:LoopyBP/NiveMax )
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(a) Unary Model prediction (b) Pairwise Model prediction

Figure 4.5: Per super-pixel predicted labels are superimposed on the raw
image. This Nuclei detection dataset only has foreground and background
hence we only colored the Nuclei label foreground predictions. The reader
can observe that the Unary model (a) has more disconnected components
than the Pairwise model (b). In this particular dataset the nuclei are always
connected in one large object hence giving pairwise model an advantage to
not make this kind of error. Data( Single Channel 3D Nuclei [11])

4.4 Impact of the Regularizer

Out of all the tuning parameters lambda needs to be adjusted most carefully,
as it determines the freedom w has. In the optimization function λ can be
interpreted as weighing the size of the margin and the actual loss defined in
the slack variable (see equation 2.14 on page 10). As we can see in figure 4.6
choosing the right λ for your problem is crucial for the final outcome. This
pattern in test error can be further explained when looking at the structured
hinge loss (2.13) over rounds, Figure 4.7. We can see that for low λ the
Structured Hinge loss H̃i(w) does not decrease over meaning that the λ was
so restrictive on ||w|| that BCFW could not find a piece of information which
was useful enough to warrant changing ||w||.

To gain farther understanding about the effect λ has on convergence we
can consider the effect it has on the ||w|| over time. See Figure 4.9 which
shows us how ||w|| does not converge with a λ of 100 and below but as
λ is increased we can see the curvature also increases indicating it would
converge faster with higher λ. The test scores with really low λ are not
good but they are still significantly better than pure chance labeling, this
can be explained when considering that as λ goes to zero the optimization
problem becomes a simple structured perception which still has the ability
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Test Error vs λ, Using Untransformed Features

Figure 4.6: Displayed are the test scores of the same model run with different
regularization λ. The distribution displayed was produced by in sample
cross validation. We can see a clear separation between λ which are not strict
enough to result in good convergence (≥ 100,≤ 10000) and those which do
not converge (≤ 0.1). Additionally λ which are too strict result in lower
accuracy again do to them not allowing full exploration of the relations
between the features (≥ 100000). Data( MSRC version 2 [36])

to learn a decision boundary but it of course has very poor generalizability
as can be seen by the high variance in the score between rounds in Figure
4.10.

λ 1000 has a nice shape showing in early rounds w is changing significantly
from its initialization of zero and then the norm increase plateauing indica-
tion the model has reached some kind of a stable point. Although the ||w||
can appear to be staying constant while the direction of w changes continu-
ing to improve accuracy. Still since we change w in incremental steps such a
curve as with λ=1000 is indication of a good choice. This choice of λ can be
confirmed if one calculates the test error every round as in Figure 4.10 and
we observe a decreasing trend over successive rounds.

λ greater than or equal to 10000 make their initial move away from zero in
the first round but then steadily decrease until plateauing. One would ex-
pect that this strange kind of behavior would not result in any reasonable so-
lution but it turns out if we look at Figure 4.10 that the test error for the high-
est λ is actually very close to the best solution found at λ = 1000. To explain
this behavior consider the dual objective f (α) := minα∈Rm,α≥0

λ
2 ||Aα||2− bTα

where A:= 1
λn ψi(y) ∈ Rd|i ∈ [n], y ∈ Yi and b:=( 1

2 Li(y))i∈[n],y∈Yi
, with very
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4.4. Impact of the Regularizer

Figure 4.7: This Figure shows the Structural Hinge Loss maxy∈Yi Li(y) −
〈w, ψi(y)〉 over time varying the regularization paramater λ. A clear differ-
ence can be seen between low λ up to 0.1 which do not have a negative trend
and also do not seem to converge in terms of structured hinge loss, while λ
100 and above have a clear negative trend over time and as λ gets larger they
also converge faster. It should be noted that each experiment starts with the
same w and hence also starts with the same structured hinge loss of 0.7462.
Data( MSRC version 2 [36])

high λ the first term of the dual would drop out due to the squared A with
a λ in the following denominator.

lim
λ→+∞

( f (α) := min
α∈Rm,α≥0

λ

2
||Aα||2 − bTα) = min

α∈Rm,α≥0
−bTα

Now we can see that with high λ solving the dual would end up optimizing
for the point which would have the highest loss for each Yi individually
such that αi(y∗) = 1 where argmaxy∗Li(y∗) and αi(y′) = 0, ∀y′ 6= y∗ since
α is constraint with ∑y∈Yi

αi(y) = 1∀i ∈ [n]. With KKT conditions w = Aα
is simply the sum of the joint features maps of the most violating label
configurations for each data point. If we where to consider this solution in
the special case of the binary SVM w would be the vector which if extended
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4. Results

Test Error vs λ, Using Standardized Features

Figure 4.8: Similar to Figure 4.6 we can see that low λ do not converge
properly and hence have significantly higher loss. In this experiment the
lowest loss is at 100000 several orders of magnitude higher than in Figure 4.6
which ran the same experiment only changing the feature standardization
setting.; Data( MSRC version 2 [36] )

would go through the centroid of both classes. The figures used in this
section where based on data which was in fact binary [11].

4.5 Data Dependent Pairwise Models

To examine farther why the data dependent models did not outperform the
standard pairwise model we plot the convergence rate of the pairwise in-
dexes of w. As seen in Figure 4.11 the curve of the norm of wpairwise over
sequential rounds is much steeper for the standard pairwise model as com-
pared to the two data dependent models presented. This indicates that the
data-dependent pairwise terms may have needed more rounds to converge
than simple pairwise model. A rational for the difference in convergence
rate could be that the data dependent term can only gain information from
the portion of the transitions which are binned into that group of the data
dependent pairwise model hence it probabilistically requires more data to
gain the same amount of information in each bin. To test this hypothesis we
reran this experiment with larger suboptimal λ selections. In Figure 4.12 we
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4.5. Data Dependent Pairwise Models

||w|| over rounds, faceting λ

Figure 4.9: The change in the Norm of the weight vector w over time is a
good indicator of the algorithms convergence depending on λ. When λ is 1
the augmented hinge loss will prefer the w which has the smallest amount of
loss, once the loss can not be improved significantly anymore it will start to
choose w with a larger margin (Large Margin and Low Norm are equivalent
in the SVM). The smaller λ gets the longer the algorithm can optimize the
loss without worrying about the margin. If λ where zero then we would
have a simple Perceptron. When λ becomes too large the norm curve of
w does not have the expected trend but one can still see if the algorithm
converged. Data( Single Channel 3D Nuclei [11])
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4. Results

Test Error over rounds, faceting λ

Figure 4.10: Looking at the curve of Test Error over time with different λ we
can see that higher λ converge faster and if one sets λ two low it does not
seem to converge at all. Data( Single Channel 3D Nuclei [11])

see the Structured Hinge Loss over time and as the λ gets higher there is
a trend of the data dependent models improving their gain over the simple
pairwise model. indicating that the data dependent pairwise term could
converge better with a higher λ value but such high λ result in lower Test
Error due to the unary term as described above. Preliminary results with
high number of rounds ≥ 110 show the data dependent models starting to
converge and improving the test error over simple pairwise models. Put
since the unary term does not require this many rounds to converge we
purpose an addition to the current system which would allow for different
regularization of the pairwise term separately from the unary term.
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4.5. Data Dependent Pairwise Models

Pairwise W norm over Sequential Rounds

Figure 4.11: The above graph displays the norm of the pairwise portion of
the weight vector. The weight vector is always initialized to zero at round
zero. The curve of ||w|| can indicate convergence behavior. In this experi-
ment it appears that Loopy BP (the Simple Pairwise model) is converging
faster than both data dependent pairwise models. Data ( EM Mitochondira
Labeling split into 823 cubes with super-pixels of size S = 10 [16] )
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4. Results

Structured Hinge Loss over Time, including Linear Trend Line

Figure 4.12: This Figure displays the Structured Hinge Loss (maxy∈Yi Li(y)−
〈w, ψi(y)〉) over time of the different pairwise models. With the added linear
regression line we can see that as we increase λ the difference between the
simple pairwise model to the data dependent models increases. Higher λ
cause faster convergence hence we conclude that data dependent models
require more rounds to converge. Data:( EM Mitochondira Labeling split
into 823 cubes with super-pixels of size S = 10 [16] )
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Chapter 5

Distributing Workload

5.1 Single Node, Multiple cores

Spark can be used to distribute the inference work over a cluster but also it
utlizes local parallelization without writing multi-threaded code. In some
computing environments it may be cheaper to use one 36-core machine ver-
sus nine 4-core machines, or it could be advantageous for the user to avoid
time lost in network synchronization. When distributing on one machine
one must consider memory limitations, by default spark assigns 512mb per
driver hence if one is running a 36-core machine other than the ram needed
for the driver it must have 18432mb available for all the executors. When us-
ing sbt run-main runReadTrainPredict to start the local job one can spec-
ify the internal driver memory used with the spark driver memory which
should be specified as a string just as in the spark configuration.

As is typical when distributing we do not get perfect scaling as adding more
executors requires more synchronization work. Figure 5.1 shows total train-
ing time required for the MSRC dataset on a 8 core machine varying the
number of local-spark-executors. Even when setting the number of execu-
tors equal to the total number of cores available we did not observe any
thrashing but rather still saw a slight improvement from 7 to 8. Scalling
well even up to the max number of cores can be partially attributed to the
design where the driver has little work until a round ends and the executor
results needto be combined, during this time when the driver is active the ex-
ecutors are idling. Hence they do not compete for computational resources
even when both are on a single machine. The increase in the time needed
for the Spark Driver to coordinate the different spark-executors is visualized
by the difference between blue and green points (Total Training Time - The-
oretically perfect Scaling). From one to two executors there is a jump in
this difference because this is when merging of results first occurs. As the
number of executors increases the distribution coordination time increases
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5. Distributing Workload

but with negative second derivative. Additionally we plotted what training
time we would expect if the entire system only needed to run the oracleFn
and was being distributed perfectly in Red (Decoding Time / number execu-
tors). As expected this curve is slightly above the perfect theoretical scaling
because of course the cores of the CPU and the work we do inside the ora-
cleFn are not completely independent. To farther ensure that the oracleFn
is being scaled as well as we think we reran the above experiment with sig-
nificantly higher loopy belief propagation iterations such that the individual
oracle calls are significantly longer. In Figure 5.2 we see that under these
conditions we get scaling which is even closer to theoretically perfect hence
affirming that the oracle calls themselves are very well distributed.

5.2 Multiple Nodes, Single Core

As we expected on tasks with a high max-oracle decoding time the addi-
tional time required for spark to recombine results over the network does
not significantly impact scalability when contrasting to parallelizing on a
single machine without network time, see Figure 5.3 for details. Addition-
ally the data that needs to be transferred over the network is very minimal
because of how dissolve-struct is designed. Dissolve-struct when config-
ure to run Distributed-BCFW utilizes a method optimized for low network
traffic called CoCoA (Communication-efficient distributed dual Coordinate
Ascent) [13].CoCoA can be applied to a large class of linear regularized loss
minimization objectives, which includes the SSVM image segmentation ob-
jective 2.14. The primal-dual structure of these problems was used to aggre-
gate partial results from local computations in such a manner that reduced
network traffic and avoided conflicts with updates made by different ma-
chines. It has also been shown that the CoCoA communication and weight
update scheme has little effect on the total amount of computation needed
to achieve the same accuracy as globally communicating methods [13].
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5.2. Multiple Nodes, Single Core

Single Node Scalability by Varying Executors

Figure 5.1: In blue we see the total time to train the model as measured
on the driver node, this time consists mostly of time spent in the oracleFn
but also there is a constant overhead of 16000ms and for the experiments
with greater than one executor we have a significant amount of work don’t
on a single thread when combining and coordinating the executors. The
red points are the recorded total amount of time spent inside the oracleFn
divided by the number of cores available to spark shifted to match the con-
stant overhead of the single executor experiment. The Green points are the
theoretically best scaling extrapolating from the pure decoding time of the
experiment with only one executor by simply dividing by the number of
cores and also shifting the constant overhead.
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5. Distributing Workload

Single Node Scalability by Varying Executors (More decoding iterations)

Figure 5.2: See description for Figure 5.1 we reran the same experiment but
with more loopy belief iterations to get a more precise max oracle decod-
ing. Comparing to Figure 5.1 we see an even better scaling with very little
increase in context switching time as seen by the difference to the perfect
scaling curve in green. This was expected as we modulated on parameter
which only effects the max-oracle timing.
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5.2. Multiple Nodes, Single Core

Cluster Scalability, Single Core per Machine

Figure 5.3: This Figure displays the total training time required for the entire
MSRC data set on a varying number of m3.large AWS virtual machines each
configured to use just one core. We can again see a good scaling curve
as the true train time is close to the expected train time if there was no
delay in context switching (Theoretically Perfect Scaling). Bu the scaling is
not perfect and as more machines are added the difference in training time
produced by additional time used on the driver node for recombination and
coordination increases the distance to perfect scaling.
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Chapter 6

Discussion

While the EM Mitochondria data set resulted in good performance of the
pairwise model there were others like the MSRC data set where the unary
model was not significantly overtaken. As explained in the results section
4.3 we find that the pairwise models do produce much smoother (and there-
fore more natural) predictions. But this is not captured in the Hamming
distance loss function and hence on some data sets the unary gets higher ac-
curacy even if the prediction has single labels in a neighbourhood which we
know a-priori would be impossible. We suggest for future work to develop
a new loss function which evaluates the accuracy on the test set by also cap-
turing the natural plausibility of the output produced. In many applications
it is more important for the segmentations to be biologically plausible than
having the highest per pixel match to the ground truth. Some replacements
to the Hamming distance have been purposed. The PASCAL natural image
segmentation challenge was measured using the per class Jaccard distance
[8]. A measure which encourages labelling with the correct size was pro-
posed by Pletscher and Kohli [31]. Balancing false positives versus false
negatives with class priors was attempted by Lempitsky et. al. [20]. But all
the above loss functions do not consider the topology of the labelled objects
as a whole. A possible candidate for a more biologically realistic compari-
son could be the Rand index. It provides a segmentation accuracy in terms
of pair-wise pixel connectivity [3] and may reward the pairwise models for
their prediction smoothing.

Still, with the simple weighted loss function used for all our training we
achieve satisfying results with very good scalability, and preliminary re-
search has shown that the accuracy can be vastly improved by using more
sophisticated features. The code used in this report will be released open
source as part of the dissolve-struct package at:
http://dalab.github.io/dissolve-struct/
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6. Discussion

6.1 Expansion of Features

We did not focus too much attention on the features as their choice is very
dependent on the data at hand. Still for biological data we would like to
expand the set of pre-installed features to include Ray projection features ??.
And recently deep-learning features have found a lot of success on natural
image segmentation problems [17]. These Deep-Learning features actually
result in a much higher dimensional problem than what we are solving but
since we solve it in the dual and representing alpha as sum of sparse vectors
the system is robust to the feature vector becoming very large.

6.2 Expansion of ScalaSLIC

We chose to perform the preprocessing on single machine because it only
needs to be done once before training and in order to keep this package
simple as it will be published open-source separately. But in practice we
found that the preprocessing takes a significant amount of time and could
easily be distributed on a per image basis. Once this preprocessing step
is distributed one could also expand the distance measure to include more
complex features than just the LAB space distance.

6.3 Improving Inference

While we were rather satisfied with the approximate decoding of LoopyBP
many interesting problems only require binary labeling. For this subset
of problems efficient Graph-Cut algorithms exist which can perform exact
inference even with loopy CRF [37]. With exact inference convergence will
be faster and the variance of the estimator will be lower allowing for easier
fine tuning. Hence we hope to add graph-cut as an option for solving the
max-oracle problem in the future.

6.4 Improving Automation

As we described in section 4.4 the λ parameter is critical for good conver-
gence of BCFW. The user is advised to always rerun their experiment with
λ constants at several scales to find the best range. $ could easily be selected
automatically by minimizing the cross validation error on the training set.
Additionally we explain the relevance of compactness parameter M for the
super-pixel preprocessing described in section ??. The parameter M is inde-
pendent of the choice of λ and could be optimized by running slick several
times and optimizing for the most uniformity of ground truth labels within
each super-pixel.
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Appendix A

Implementation Details

A.1 Preparing and Reading in data

Regarding the data-importing functions that we provide, we expect the data
to be stored in two folders - one for the raw image files and the second a
folder for the ground truth mask. It is necessary to give these folders their
respective names - ”Images” and ”GroundTruth”. Both raw images and
ground truth can be in .bmp, .tif or .png formats but the format must be
uniform throughout a given data set. Furthermore, it should be noted that
due to the ground truth mask’s being mapped to its image by file name only,
the images folder and the ground truth folder must therefore have the same
number of files, and the same set of names. Ground truth masks’ labels
are read in per pixel. The ground truth mask itself should be considered
a space-indexed label mapping, therefore each label must have exactly one
value here. This also demands that (a qualifier for ’these ’ would be nice
given the brevity of the rest of sentence) these files be much smaller than the
image files. The data location is specified by the input argument ”dataDir=”.

A.1.1 Caching

If the user chooses to run our preprocessing functions for creating super-
pixels, extracting features, and constructing the graph, then all of these will
be cached on disk in the same folders in which the data reside. The caches
are performed for each image individually and are named after the raw
image file name. With this very simple caching system we prevent the user
from having to recompute every image in the event of a crash or when chang-
ing a few parameters for later portions of the pipeline. If the user wishes
to rewrite the cache without first checking whether or not there are match-
ing flags in the files, one should in that event, specify the input argument
”recompFeat=true” or, by preference, the user can change the ”runName=”
input argument to generate a new set of caches while leaving the old ones as
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A. Implementation Details

they are. The files ending in ”.mask” in the ”Images” folder contain the map-
ping between the pixel index and super-pixel id. Files ending in ”.graph2”
contain the completed graph structure of the associated image, I.E. nodes
which save their own features only and the node ids of their neighbours’.
Files ending in ”.classCount” , ”.colorlabelmapping2” and ”.transProb” con-
tain the class frequency count, the map between colors used in the ground
truth files and internal label id, and the transition probabilities between la-
bels respectively. The files ending in ”.labels2” contain the cache for the true
labelled graph of these training data sets.

A.2 Running ScalaSLIC

ScalaSlic can be used as a standalone package on any kind of data which is
located on a uniform grid like color voxels. When constructing a new SLIC()
object one needs to input the data in a ”Array[Array[Array[DataType]]]” for-
mat, where data type can be a RGB triple, a single grayscale byte but it could
also be, for example, a series of RGB values from a video sequence. While
the data type is technically free from the scala compiler’s perspective, practi-
cally one must be able to define the following functions: distFn:(DataType,

DataType) => Double , which simply measure the distance between two
pixels. The functions:

rollingAvgFn = ((DataType, DataType, Int) => DataType);

normFn = ((DataType, Int) => DataType);

are used for the cluster update step to get an average point in this ”DataType”
space. As an exmaple the following are the functions we use for RGB

val distFnCol = (a: (Int, Int, Int), b: (Int, Int, Int)) =>

sqrt(Math.pow(a._1 - b._1, 2) + Math.pow(a._2 - b._2, 2) +

Math.pow(a._3 - b._3, 2));

val sumFnCol = (a: (Int, Int, Int),b: (Int, Int, Int)) => ((a._1 +

b._1, a._2 + b._2, a._3 + a._3));

val normFnCol = (a: (Int, Int, Int), n: Int) => ((a._1 / n, a._2 / n,

a._3 / n));

The final mandatory input for ScalaSLIC is S which determines the initial
grid spacing of the super-pixels and thereby also setting the initial num-
ber of cluster centers, and how large the super-pixels will be. Additionally
super-pixels will be modulated by the parameter M which specifies the com-
pactness of the super-pixels. If M is not specified we go for the alternative
approach of normalizing distances by the max distance in the each super-
pixel set.
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A.3. Features

A.3 Features

We implemented a host of basic features such as color and intensity his-
tograms, a co-occurrence matrix, and other features based on the super-pixel
graph structure - the sum of neighbour histograms and the neighbourhood
intensity uniqueness to name just two, and it is only after the super-pixel
bounds have been determined that all of these features may be computed.
Most of the features are extracted by running overall pixels in the image
once and adding to some the moving average of the feature indexed by the
super-pixel id of that corresponding pixel. Our graph construction script
genGraphFromImages is designed in such a way that the specified feature
functions are divided into input argument featureFn or afterFeatreFn.
As the name implies, afterFeatureFn is run after the graph is constructed
and provides those feature functions with the graph edge information; fea-
tureFn is for unary features only. Alternatively, when using our start-up
main method runReadTrainPredict the already implemented feature func-
tions can be enabled or disabled with runtime arguments.

A.3.1 Predefined Feature List

All of the below features can be specified in the run time arguments of
runReadTrainPredict for color, grayscale, 2D and 3D image data sets.

featIncludeMeanIntensity Averages all pixels assigned to a super-pixel into
one mean intensity. For color, this mean intensity is the corresponding
converted grayscale intensity. This feature may also be added to the
meta data of a node so that the data-dependent pairwise models can
use it.

featHistSize If set above zero, we construct a normalized histogram of col-
ors or grayscale intensities with equally sized bins. Bin sizes are al-
ways 255

f eatHistSize . The color version of this histogram constructs bins per
color dimension and keeps the same number of bins specified, hence
for color featHistSize must be divisible by three.

featUseStdHist Will construct a discrete distribution like histograms but
with non uniform bin sizes. It initially computes a global distribution
of intensities and constructs bins which should contain approximately
equal data points. featHistSize is still used to specify the number of
bins but only the standardized bins are used in the features. The bin
sizes are computed once for the whole data set and are of course not
adjusted for new data hence the training set must be sufficiently large
for the distribution to be accurate.

featCoOcurNumBins Co-occurrence matrices are constructed by again bin-
ning all pixels into uniformly sized ranges and then counting all occur-
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A. Implementation Details

rences each pair of bins appearing as neighbours. Again the number of
bins must be divisible by three if used on color data. One can specify
exactly which kind of neighbourhood should be used; by default we
only consider one pixel hop and no diagonals - in order to change this
one must alter the feature function call with different directions input.
For a detailed description see [12].

featAddOffsetColumn This will simply add a column of ones into the fea-
ture vector giving the SSVM one more degree of freedom for its deci-
sion boundary.

featAddIntensityVariance Calculates pixel intensity variance per super-pixel;
for color images this is again the converted grayscale value Red

3 +
Green

3 + Blue
3 .

featUniqueIntensity Computes mean intensities and variances for all super-
pixels, and then measures the number of standard deviations away
from the mean of its one hope neighbourhood that its own intensity is.

featUnique2Hop Equivalent to featUniqueIntensity save for using a 2 edge
hope neighbourhood.

featNeighHist Computes histograms per super-pixels as in featHistSize and
then sums all of the histograms of neighbouring super-pixels not in-
cluding the data from the super-pixels’ own space and finally normal-
izes the vector. featHistSize Again determines the size of the bins used.

featAddSupSize The count of the number of voxels assigned to a particular
super-pixel.

A.4 Additional Runtime Arguments

Critical

useNaiveUnaryMax Setting this to true will result in Dissolve-Struct using
the simple per node max decoding inside the oracle function; see sec-
tion 2.5.1.

useMF If set to true, dissolve will use the Mean Field approximation to
solve the max-oracle problem; see Section 2.5.1

modelPairwiseDataDependent If set to true, the max-oracle will be per-
formed on a CRF where the pairwise potentials are dependent on the
label but also a function of the two super-pixels’ features. This model
was only implemented for Loopy Belief Propagation decoding; see Sec-
tion 2.28

mfTemp Specify any double value for use as the temperature parameter in
the mean field decoding; see Section 2.5.1
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A.5. Synthetic Data Generation

Figure A.1: An example of SuperSquareShift noise, the top row is the true
ground truth and the bottom row is the image data used for features with
SuperSquareShift=0.4 included.

useLoopyBP If set to true, Loopy Belief Propagation will be used for the
max-oracle function; see

A.5 Synthetic Data Generation

In order to intuitively show where the pairwise models have an ad-
vantage over a non structured approach we constructed a series of
synthetic data generation functions.

See Figures : (A.1, A.2 and A.3) for visual examples of these types of
noise and figure A.4 for them all together as a typical data set. The
three types of noise are needed to make the unary model based clas-
sifiers less powerful because if they are too accurate themselves it is
unlikely that the SSVM would add any norm to the weight vector to
use the unnecessary pairwise term. The oscillatory noise is set at a
wavelength proportional to S such that adjacent super-pixels inside
one super-square will always have different amount of noise added.
The dataGenNeighProb is used to make the transition probability more
sparse and hence easier to learn making the difference between unary
and pairwise models more evident. Figure A.5 is an example of a data
set which has dataGenNeighProb=0.3 in contrast to figures A.1, A.2
and A.3 which have dataGenNeighProb=1.0.
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A. Implementation Details

1 instantiate new random number generated with seed dataRandSeed;
2 Randomly choose a true color per label;
3 choose a phase shift randomly for each color and spacial dimension =:

PhaseX, PhaseY;
4 Divide the image into a grid of supersquares of size

dataGenSquareSize;
5 With probability dataGenNeighProb choose which labels can not be

neighbours;
6 osilationWaveLength := 1/S, where S is the superPixelSize;
7 for every supersquare Q in Grid do
8 squareNoise := choose a color uniformly at random;
9 Choose a true label at random from the set of allowed neighbours ;

10 for every pixel P in Q do
11 x := P(1);
12 y := P(2);
13 truePixel := retrieve the true color for the label at this pixel;
14 write true pixel color to groundTruth file;
15 whiteNoise := choose a color uniformly at random;
16 for each color dimension c in (RGB) do
17 OscillationNoise(c) :=

(cos(x*/osilationWaveLength+PhaseX(c))*
cos(y*/osilationWaveLength+PhaseY(c))+1)*255/2;

18 end
19 noisyOutput = ( truePixel + (dataAddedNoise)whiteNoise +

(dataGenOsilNoise)OscillationNoise +
(dataGenSquareNoise)squareNoise )/(1+ dataAddedNoise +
dataGenOsilNoise + dataGenSquareNoise ) ;

20 write noisyOutput to image file ;
21 end
22 end

Algorithm 5: Synthetic Data Generation Algorithm
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A.5. Synthetic Data Generation

Figure A.2: An example of White Noise, the top row displays the ground
truth and the bottom are the feature images with WhiteNoise=0.4 added.

Figure A.3: An example of OscillationNoise, the top row displays the
ground truth and (in) the bottom row are the feature images with Oscil-
lationNoise=0.4 added.

Figure A.4: An example of all types of noise. The ground truth is in the
top row and the feature images are in the bottom row with the following
noise added: Super-Square-shift=0.05, WhiteNoise=0.35 and dataGenOsil-
Noise=0.45.
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A. Implementation Details

Figure A.5: An example data set showing groudataGenNeighProb=0.3, it
can be contrasted to A.4 where the ground truth was generated with grou-
dataGenNeighProb=1.0. We can see that in the above image some colors
never occur next to each other.
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